从一个BI项目看数据治理的重要性

从一个BI项目看数据治理的重要性

 

从一个BI项目看数据治理的重要性

今日我们来聊一聊BI

从一个BI项目看数据治理的重要性

很多企业在做BI项目时,一开始的目标都是想通过梳理管理逻辑,帮助企业搭建可视化管理模型与深化管理的精细度,及时发现企业经营管理中的问题。

 

但在项目实施和验收时,BI却变成了报表开发项目,而报表的需求往往和个人习惯有关,一旦人员发生变动,尤其是新入职的高层,会把前公司的内容搬过来,这就需要重新开发一大堆报表。

如果不从源头进行控制,被动服务模式下的IT不可能满足所有人的报表需求。接下来我们要讲的这个案例就真实反应了这个过程,同时也为大家解析问题产生的原因并找到解决问题的方法,建议所有有计划或已经实施BI项目的企业,认真阅读本文。

从一个BI项目看数据治理的重要性

 

01

从一个BI项目看数据治理的重要性

2011年底至2012年初,笔者在某著名线下直营生态为主的女装公司组织实施BI系统,项目第一期就花了100多万,长达6个月的周期,经历了业务需求调研、数据清理、指标体系梳理、数据模型构建等等一系列中规中矩的项目实施过程。

从业务个性化需求报表到以经营指标为导向的数据模型、数据驾驶舱等等,在项目组看来,除移动化展现,几乎覆盖了当前所有业务需求。在多次宣导并召开上线动员大会后,BI终于正式运行了。

 

然而现实却给了项目组一个响亮的耳光,在BI系统上线后,3个月内不仅使用次数屈指可数,就连最初要求的月度经营分析和绩效考核必须从BI中取值这两点都没有实现,依然需要业务部门从各个系统中导出数据再自行计算统计。

第一期项目很快就被宣判失败,这让整个项目组深受打击,实施方法论是没有问题的,也针对上述状态的可能性做了很多短期过渡的报表,还有最大自由定义的万能报表,但最后用户们依然不满意。这究竟是什么原因呢?

02
从一个BI项目看数据治理的重要性

项目组进行反思,并用一周时间去做了用户调研,进行深入的讨论总结。

1.大部分用户反馈BI系统操作缺乏便利性,使用起来特别麻烦。因为每个用户只需查看自己日常工作的数据即可,这第一期BI系统实施把所有业务特性进行了归纳,按照其基础职能设置指标组合与自主选择的时间跨度栏位。

用户因此产生一个印象就是需要的报表全部堆砌在一起,你需求什么自己去找,而且部分派生指标取值需要重新计算后产生,报表展现的效率低下,BI操作起来就很痛苦。

其实每一项体系既要有决策层的视角,也要有管理层的视角,虽然按照操作层的指标体系与时间自定义几乎涵盖一切,但这样并没有针对每一个岗位进行相应的配置,要想得到用户认可,首要要素需要满足各层级用户在某一时间周期内的数据所见即所得。

2.操作层面甚至管理层面的用户其实并不知道自己想要的是什么指标组合,都是点状的指标名称+计算公式,缺乏针对业务管控的点到线再到面的指标组合与维度标签。项目组在第一期实施中也没有针对派生指标以及复合指标进行结构化梳理

即便部分派生指标与复合指标已经梳理了,也还是需要参考时间跨度选择进行即时计算,这就导致当用户碰到相应的数据需求时,部分在指标组合中看不到结果,系统响应效率低下,还不如用户按照之前操作通过业务系统导出数据表再进行二次加工来的快,以至于月度经营分析与绩效考核的数据来源五花八门。

3.指标体系的管理逻辑梳理不清晰,需要用户凭经验去寻找数据背后的逻辑。BI的价值是提升管理的精准度,通过数据构筑一个企业管理模型。BI系统实施的最大能力就体现在如何梳理管理逻辑,帮助企业可视化展现管理模型与管理的精细度。

例如店铺的经营管控中,店铺成长性分老店、次新店、新店三种类型,不同成长性的门店,用户关注的管理逻辑肯定是不一样的。比如对于新店来讲,理论上没有新老商品之分,陈列结构上就不是重点关注指标,但对于一个老店的话,新老货品在陈列和销售方面的比例是有考核要求的;那么次新店的新老款结构指标又会有所不同。对于三种成长性在不同阶段的店铺,关注与考核指标的设置层级、可视化方案都有区分,这就是管理逻辑的问题。

比如库存周转率有三种计算原则,在不同的管理视角上采用的计算原则也就不一样:

  • 库存周转率=“本年度销售货品成本/存货成本”,第一种计算原则侧重于以货品成本作为计算基数,反映企业存货销售的速度,它对于分析企业流动资金的运用及流转状况很有帮助,属于宏观财务指标。

  • 库存周转率= “一个周期内的销售额/(期初存货金额+期未存货金额)/2” 第二种计算原则侧重于分析某个单元(如店铺)货品库存的周转速度,指导找出店铺库存管理中存在的问题,采取相应的解决方案,提高库存周转速度,以减少产品积压,属于单一库存单元(如店铺)的运营指标。

  • 库存周转率= “总销售金额(批发+零售)/月平均库存金额” ,第三种计算原则侧重于分析公司货品整体周转速度,评价公司商品开发、计划与调配的水准,指导商品管理改善产品结构与供应链的效率,属于企业经营性指标。

4.主数据定义的一致性问题,用户经常反馈业务系统与BI数据报表中相同维度的数据会出现的一些差异,导致大家对BI数据的信任度严重下降。那么产生差异的最主要就是因为主数据定义的一致性。例如定义时间维度的规范性上,上述店铺成长性分类,新店的时间维度是按开店12个月内算?还是按18个月内算?不同业态渠道对于成长性定义是否有区别?这就是主数据的规范性,需要进行清晰的定义。

5.技术性问题,用户对于报表的展现形式以及交互性异口同声表示难以认同,另外第一期终端门店类数据展现还没有实现移动化。

综合上述调研的问题,项目组征得公司信息决策委员会的同意,于2012年8月启动了第二期的BI系统实施,项目组经过商讨决定改变实施思路,先暂停技术性工作,首要任务是进行公司的数据治理。

从一个BI项目看数据治理的重要性

 

03
从一个BI项目看数据治理的重要性

 

那么数据治理要怎么开展呢?

 

  • 第一个就是主数据的治理,也就是说企业经营管理过程会用到哪些主数据?这些主数据是如何产生、如何进行分发、会标记哪些维度形成派生主数据?随后在BI中单独搭建一个主数据中心库,抽取业务系统的主数据按照分类原则存放,并开发主数据一致性校验程序与主数据分发日志表。

  • 第二个是指标的梳理,建立指标体系,定义每个分析过程中的使用的业务指标,建立评价标准,以及计算方法,将业务管理逻辑进行更加直观的呈现,销售环节出现了数据波动就可以直观的呈现出来,通过指标的呈现,可以追踪哪部分业务发生的问题。

     

  • 第三个就是规范数据产生的入口,以及数据取值的出口的标准。明确所有数据的录入产生的作业标准,建立各个系统到BI的接口规范,企业经营活动中产生的几乎所有数据都要进数据仓库,并由BI系统统一进行数据抽取与数据加工;另外针对所有业务部、职能部提交的月度经营分析、月度绩效考核、年度关键考核指标、日常管理分析的全部数据需求进行综合评估分析,搭建相应的数据模型,要求任何所有应用数据都从BI系统取值,有了入口与出口的规范才能保证数据的一致性与唯一性。

04
从一个BI项目看数据治理的重要性

 

完成上述三个动作后由项目组协同企管部门编撰公司数据管理制度,进行全公司范围的发文,数据管理制度定义了主数据产生、指标体系的结构与算法、数据录入与输出的标准等,是一项公司完整数据管理规范。

从一个BI项目看数据治理的重要性

发文同时还明确了公司数据治理小组的组织架构与职能,治理数据小组有4种角色:

  • 第一个是数据操作员,是业务部门的操作人员,主要发起主数据的调整、BI系统的维护、指标体系的修改申请等等; 

  • 第二个是数据审核主管,往往是部门领导。每个数据是由不同部门负责的,首先由数据操作员提出第一级的申请,其次是数据负责的部门进行审核。

  • 第三个角色是数据的分析员,他对数据审核主管的审核进行分析,看修订的要求是否合理?是否影响其他主数据、指标和数据模型。

  • 第四个角色是BI系统的管理员,经过审批审核后修订要求必须由系统管理员操作才能进行调整。即使这样每隔一个时段还是会有很多业务指标需要调整,比如新的业务出现或是新业务发生变化,甚至要调整公司组织架构,这个流程申请就是项目管理形式进行。

公司OA中也配置相应的三个流程,一是主数据的修订流程、二是管理指标和KPI指标调整的流程、三是报表优化的流程。通过数据治理实施过程,IT团队的数据中心部门基本实现公司数据的统筹工作,整体上也形成了PDCA的循环。

 

05
从一个BI项目看数据治理的重要性

数据治理进行了一个月时间后,项目组又重新针对BI系统进行了优化,关键点有以下几个:

 

  1. 梳理业务分析体系:先从纯业务角度总结和梳理,分析各个业务中的流程和思路、常用角度、导向、评价标准,以及业务背后的原因。此体系的建立,是业务分析的总览,也是业务流程环节的真实需求,为后续的指标体系、系统实现打下基础,同时在业务分析体系建立的过程中,收集分析业务、数据的痛点和需求。

  2. 重新整理分析需求:根据收集的需求,业务分析的流程和思路,以及系统中的报表进行匹配和提炼,形成新的分析需求。

     

  3. 针对公司零售业务的变化特性,以月度为单位记录业务调整导致的指标比重系数发生调整和变化的历史数据,比如新店变成次新店、次新店升级为老店的时间维度差异。

  4. 将指标体系的业务管理逻辑进行更加直观的呈现,销售环节出现了数据波动就可以直观的呈现出来,清楚的知道到底是哪部分业务发生的问题。例如针对销售额的构成这个管理主题,系统划分有零售、加盟批发,内部特卖等,零售又要分线上和线下,还要划分渠道业态来源等等。那么本质上它需要针对业务特性进行分解,并从全局的视角做一种直观的呈现,并且能够在报表结构上一层一层的钻取透视。

  5. 更加细致精准划分管理层级的数据展现,针对业务操作层的用户也可在日常应用、周度汇报、月度绩效、年度关键指标上进行数据的直观呈现,所见即所得,虽然开发工作量增加,但是用户体验直线上升。

  6. 终端店长、品牌督导、城市经理的数据应用实现移动化,结合企业微信用H5页面展示,打开手机就能查阅数据、提报数据,门店经营指标数据按照时间维度进行固化。

  7. 针对公司零售业务的变化特性,以月度为单位记录业务调整导致的指标比重系数发生调整和变化的历史数据,比如新店变成次新店、次新店升级为老店的时间维度差异。类似的还有价格调整,新老款的变化记录,通过动态标注,记录业务产生时的情况。

从一个BI项目看数据治理的重要性

06
从一个BI项目看数据治理的重要性

第2期的项目实施在2012年12月份结束。从2013年起,至今公司的经营分析报表以及KPI考核的数据取值,都是由BI提供的,用户对BI系统的日常使用频率仅次于核心业务系统。公司的管理理念也发生了深刻的变化,从上至下不再用定性的语言表达,形成了用数据说话习惯。当管理维度与经营业务发生变化的时候,也形成了通过数据治理体系来进行相应修订调整的习惯。

IT团队的数据中心部门设置5个岗位,数据中心经理负责管理工作,数据分析师负责数据模型的设计以及指标的分析,有两个BI系统开发师负责数据仓库维护与数据模型开发,一个H5开发工程师负责移动端开发。

从一个BI项目看数据治理的重要性

 

07
从一个BI项目看数据治理的重要性

从整个BI项目的实施价值上来讲,有这样几点内容可以分享:

 

  1. 从公司经营决策者角度来讲,通过驾驶舱可以快速看到企业的业务全局,及时掌握公司的经营状况,通过数据钻取透视看到整体业务的变化过程。经营层面出现的任何问题,都能透过数据预警反馈到业务管理逻辑上,也非常容易找到关联的业务动作,也就是哪些业务出现了问题。

     

  2. 管理者透过驾驶舱与关键考核指标组合报表可以快速阅读自己的KPI指标以及关注和的经营指标的变化,因为每个管理岗位应该关注的什么内容在体系上梳理很清晰了。

  3. 数据仓库,通过建立数据仓库,进行企业的数据治理,将企业的数据打通,形成可以分析和复用的数据资产。

  4. 整个操作层用户的工作效率提高了很多,大家都在一个频道,用同一种数据来源做汇报,再也不需要像过去需要临时加工一些乱七八糟的报表了。

  5. BI系统第2期的实施大大丰富了IT团队的知识结构,尤其是数据中心团队的归纳总结、分析问题以及对公司主营业务的认知和理解能力有很大进步。也让业务部门清楚的认识到IT对企业管理的价值,更加配合今后信息系统的实施与部署,IT部门的影响力得到了直观体现。

 

08
从一个BI项目看数据治理的重要性

航哥点评:

案例企业通过数据治理让BI项目起死回生,解决了数据源问题,规模了企业管理的基础,也提高了信息系统的有效性,IT人员的价值也得到了体现。

数据治理企业可以组建内部团队去梳理相关指标和数据源,聘请外部资源更容易达成共识,无论何种途径,数据治理是实施BI系统的必要条件。

END

有趣的灵魂在等你
从一个BI项目看数据治理的重要性
长按扫码关注

本篇文章来源于微信公众号:华南时尚行业CIO联盟

发表评论

登录后才能评论


联系我们

400-800-8888

在线咨询:点击这里给我发消息

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息